
MATH336 PAPER

THE MAXIMUM CUT PROBLEM AND THE GOEMANS-WILLIAMSON

ALGORITHM

AUSTIN ULRIGG

Date: August 1, 2024.

1

2 AUSTIN ULRIGG

Contents

1. Introduction 2
Definition of a Graph 3
Example Graphs 3
The Adjacency Matrix of a Graph 3
Definition of the Adjacency Matrix of a Graph 3
2. Maximum Cut Problem 4
3. P=NP Conjecture 4
4. What’s to Come 4
Quadratic Program Reformulation 5
Lemma 4.1 5
5. Lower Bounds 5
Theorem 5.1 5
Theorem 5.2 Edwards-Erdös 5
Lemma 5.1 6
Remark 6
Remark 8
6. Special Graphs for Max Cut 8
Theorem 6.1 8
Theorem 6.2 9
Theorem 6.3 10
7. Goemans-Williamson 10
Lemma 7.1 10
Lemma 7.2 11
Theorem 7.2 Goemans-Williamson 12
Lemma 7.3 12
8. Conclusion 13
References 15

1. Introduction

Graph theory is believed to have begun in the 18th century with the work of Swiss mathematician
Leonhard Euler. In 1735, Euler presented a solution the the famous Könisberg Bridge problem which
involved determining if a walk through the city of Königsberg that would cross each of its seven
bridges exactly once was possible, which is widely believed to the first theorems of Graph Theory.
Euler also discovered the crucial formula

V − E + F = 2

relating the number of vertices, edges, and faces in a convex polyhedron and related it to planar
graphs. The constant in this formula is now known as the Euler characteristic of a graph and
can be related to the genus of the graph. Euler also introduced many other fundamental ideas
in graph theory, like that of a Eulerian path/circuit. In the 20th century, graph theory exploded
through the contributions of Hungarian mathematician Paul Erdös. Known for his extensive collab-
orations, Erdös was one of the most productive mathematicians of all time, publishing over 1,500
papers, so much so that his legacy is remembered in the concept of the “Erdös number,” which de-
scribes the collaborative distance between an author and Erdös. Erdös contributed much too many
fundamental results in graph theory to describe them all here, but importantly for this paper he
conjectured the Edwards-Erdös theorem which gives a lower bound on the maximum cut of a graph,
and revolutionized much of graph theory through his popularization of the probabilistic method

MATH336 PAPER 3

which allows mathematicians to prove the existence of graphs with specific properties without hav-
ing to explicitly construct any graph. This paper focuses on the Maximum Cut Problem and the
Goemans-Williamson Algorithm in graph theory, but we will begin with a list of relevant definitions.

Definition of a Graph. A graph G(V,E) is defined by its vertex set V and edge set E.

• V is a non-empty set of vertices, V = {v1, v2, ..., vn}.
• E is the edge set, E = {e1, e2, ..., em}, where each edge ek is an unordered pair of vertices

(vi, vj), indicating a connection between vi and vj .

We ensure that our graphs do not contain multiple edges with the same pair of endpoints, so no
ei = ej where i ̸= j (these types of graphs are called multigraphs) and we restrict our graph from
having self-loops, where a vertex connects to itself via an edge.

Example Graphs. Here are a few examples of graphs and their respective vertex and edge sets,
along with an example of the graphs we are not considering:

v1

v2

v3

v4

v5

v1

v2

v3

v4

v1

v2

v3

Vertex and Edge Sets:

(1) K5 Graph:
• Vertex set: V = {v1, v2, v3, v4, v5}
• Edge set: E = {(v1, v2), (v1, v3), (v1, v4), (v1, v5),
(v2, v3), (v2, v4), (v2, v5), (v3, v4), (v3, v5),
(v4, v5)}

(2) Triangle Graph with Extra Vertex:
• Vertex set: V = {v1, v2, v3, v4}
• Edge set: E = {(v1, v2), (v1, v3), (v2, v3)}

(3) Multigraph:
• Vertex set: V = {v1, v2, v3}
• Edge set: E = {(v1, v2), (v1, v2), (v1, v3), (v2, v3)}

A complete graph of n vertices is called Kn, where complete means every vertex is connected to
every other vertex via an edge, as in our K5 example, the complete graph of 5 vertices.

Definition of the Adjacency Matrix of a Graph. The adjacency matrix AG for a graph G is
defined as

AG =

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

Where aij being the entry in the i’th row and j’th column of AG is 1 if there is an edge between vi
and vj or is 0 if there is not an edge.

4 AUSTIN ULRIGG

2. Maximum Cut Problem

Given a graph G(V,E) (which we will from here on refer to as just G) consider partitioning the
vertex set V into two disjoint sets A and B such that V = A∪B, and counting the number of edges
ek = (vi, vj) where vi ∈ A and vj ∈ B. For example:

G

A B

For this partition of G we have 2 edges crossing between A and B. Is it possible to have more?
For an arbitrary graph G, can we maximize the number of edges that cross from A to B, and if so,
can we identify the partition(s) of V that attain the maximum number of crossings? This is known
as the maximum cut problem. We say the size of a cut of a graph is the number of edges crossing
between A and B and the maximum cut of a graph is a cut with at least the amount of edges as all
other cuts.

3. P=NP Conjecture

The maximum cut problem is known to be NP-complete, in fact, it was one of Karp’s original 21
NP-complete problems [4]. NP-complete problems are problems such that:

• The problem is a decision problem, i.e, the answer is “yes” or “no”.
• If the solution to the problem is “yes” it can be demonstrated by a short polynomial length
solution.

• The correctness of each solution can be verified in polynomial time, meaning the running
time can be upper bounded by a polynomial expansion in the size of the input for the
algorithm.

• The problem can be used to simulate any other problem for which we can verify the solution
quickly.

Because of condition 4, solving any one NP -complete problem with a polynomial time algorithm,
solves the famous P = NP problem, one of the millennium prize problems selected by the Clay
Institute of Mathematics, which conjectures “Can all problems whose solutions can be verified
quickly also be quickly solved?” [8]

4. What’s to Come

In this paper we will formulate lower bounds for the max cut of a general graph G, and we will find
solutions for the max cut on specific classes of graphs such as complete graphs and planar graphs.
Additionally, we will present a proof for the current optimal algorithm for finding the max cut of an
arbitrary graph, the Goemans-Williamson algorithm, and the implications it and the unique games
conjecture have on the P = NP conjecture.

MATH336 PAPER 5

Quadratic Program Reformulation

We first prove a lemma reformulation of the max cut as a quadratic program which will be useful
later.

Lemma 4.1

[9] For a graph G with n vertices, and aij being the entry in the i’th row and j’th column
of the adjacency matrix of G,

maxcut G =
1

4
max

xi∈{−1,1}

n∑
i,j=1

aij(1− xixj)

Proof

Proof. Consider any partition of the vertices of G into disjoint vertex sets A and B. Assign
all the vertices in A a value of 1 and all of the values in B a value of −1. So we can think of
our partition as assigning values of xi correspondent to each vertex in our graph, and then the
sum will return a value of 2 for every edge that crosses the cut, as if vi and vj are connected
by an edge then aij = 1 and if one lies in A and the other in B then aij(1 − xixj) = 2,
however, the (i, j) component of the sum will return the same as the (j, i) component of the
sum, so we are quadruple counting all of the edges in the cut correspondent to our partition
of vertices into A and B. Maximizing this sum over choices of xi will then be the same as
maximizing choices of placement for vertices into the two vertex sets A and B and it will
return 1

4 · 4 ·maxcut G. ■

5. Lower Bounds

It is easy to find a cut of any graph that attains at least half of the max cut.

Theorem 5.1

[9] For an arbitrary graph G, let #E(A,B) represent the number of edges in the cut for the
partition of V = A ∪B. Then, one can find a partition V = A ∪B such that

#E(A,B) ≥ maxcut G

2

Proof

Proof. First note the obvious inequalities that |E| ≥ maxcut G =⇒ |E|
2 ≥ maxcut G

2 .
Now partition the vertices of G with equal probability into disjoint vertex sets A and B. The

expected number of edges in the cut after performing this sorting will then be |E|
2 ≥ maxcut G

2 .
Thus, simply randomly sorting vertices for an arbitrary graph G gives us a cut with an

expected value of |E|
2 which implies that there exists a cut for any graph G of size |E|

2 or
greater, which is at least half of the max cut of G.

■

Thus, simply randomly sorting vertices we can quickly find a partition with at least half of the
maxcut of G.

6 AUSTIN ULRIGG

Theorem 5.2 ▶ Edwards-Erdös

[3]For a graph G with n vertices and m edges

maxcut G ≥ m

2
+

1

4

(√
2m+

1

4
− 1

2

)

However, before proving this result we must first cite a useful lemma.

Lemma 5.1 ▶ Bollobas & Scott

For a connected graph G, let f(G) be the maximal number of edges in a bipartite subgraph
of G, i.e, the max cut of G, and let e(G) denote the number of edges of G and |G| the
number of vertices of G. Then,

f(G) ≥ e(G)

2
+

|G| − 1

4

Proof

Proof. To see a proof of this lemma view [1]. ■

Remark. We now use this lemma to prove Theorem 0.2. It was referenced that Lemma 0.2 could
be used to prove Theorem 0.2 in Bollobas & Scott but was not proven in the paper or elsewhere, so
we provide the proof here.

Proof

Proof. Theorem 0.3 (Edwards-Erdös)
First define f(m) to be the minimum of f(G) over all graphs with m edges, i.e, the minimum
of the max cut of graphs G with m edges. Then, for a graph G with n vertices and m edges
either G is connected, or it is disconnected. If G is connected then,

e(G) ≤
(
n

2

)
=

n!

2(n− 2)!
=

n(n− 1)

2
=

n2 − n

2

Since e(G) = m we have from this that

2m ≤ n2 − n

2m ≤ (n− 1

2
)2 − 1

4

2m+
1

4
≤ (n− 1

2
)2√

2m+
1

4
≤ n− 1

2

1

2
+

√
2m+

1

4
≤ n = |G|

Then, by Lemma 0.4 we have

f(G) ≥ e(G)

2
+

|G| − 1

4

f(G) ≥ m

2
+

1
2 +

√
2m+ 1

4 − 1

4

MATH336 PAPER 7

f(G) ≥ m

2
+

1

4

(√
2m+

1

4
− 1

2

)
Now because f(m) is the minimum of f(G) for graphs with m edges, since this bound is true
for all graphs G with m edges it must also be true for the graph(s) which minimize f(G).

f(m) ≥ m

2
+

1

4

(√
2m+

1

4
− 1

2

)
Which completes our proof in the case where G is a connected graph. If G is disconnected
then let it have connected components g1, . . . gk. Then f(G) = f(g1) + · · · + f(gk). Let
e(gi) = ℓi and |gi| = αi then by assumption f(gi) is connected and by Lemma 0.4 we have

f(gi) ≥
e(gi)

2
+

|gi| − 1

4

e(gi) ≤
(
αi

2

)
≤ αi!

2(αi − 2)!
≤ αi(αi − 1)

2
≤ α2

i − αi

2

This implies that
2ℓi ≤ α2

i − αi

2ℓi ≤ (αi −
1

2
)2 − 1

4√
2ℓi +

1

4
+

1

2
≤ αi = |gi|

By Lemma 0.4 this implies that

f(gi) ≥
ℓi
2
+

√
2ℓi +

1
4 − 1

2

4

For all i. Thus, as f(G) = f(g1) + · · ·+ f(gk) we have,

f(G) ≥ ℓ1
2

+

√
2ℓ1 +

1
4 − 1

2

4
+ · · ·+ ℓk

2
+

√
2ℓk + 1

4 − 1
2

4

f(G) ≥ ℓ1 + · · ·+ ℓk
2

+

√
2ℓ1 +

1
4 − 1

2 + · · ·+
√
2ℓk + 1

4 − 1
2

4

f(G) ≥ m

2
+

√
2ℓ1 +

1
4 +

√
2ℓ2 +

1
4 + · · ·+

√
2ℓk + 1

4 − k
2

4
Now using the fact that

√
a+ b ≤

√
a+

√
b and factoring a k from the numerator we have,

f(G) ≥ m

2
+

k

(√
2ℓ1+

1
4+2ℓ2+

1
4+···+2ℓk+

1
4

k2 − 1
2

)
4

f(G) ≥ m

2
+ k

√

2m+ k
4√

k2
− 1

2

 · 1
4

f(G) ≥ m

2
+

√
2m+

k

4
− k

2
≥ m

2
+

√
2m+ 1

4 − 1
2

4

8 AUSTIN ULRIGG

Where the last inequality is true because as a function of k by the first-derivative test we

can see that m
2 +

√
2m+ k

4 − k
2 is decreasing for all k ≥ 1 and thus attains it’s maximum

for k a positive integer at k = 1. And again this bound must hold for f(m).

f(m) ≥ m

2
+

1

4

(√
2m+

1

4
− 1

2

)
■

Remark. The Wikipedia article for the Maximum Cut [11] previously contained an incorrect lower
bound citing the Edwards paper [3]:

f(m) ≥ m

2
+

1

4

(√
2m+

1

2
− 1

4

)
However, it’s clear that this inequality is not valid. Substituting m = 3 gives:

f(3) ≥ 3

2
+

1

4

(√
6 +

1

2
− 1

4

)
≈ 2.07..

Since the maximum cut value must be an integer, this implies f(3) ≥ 3. However, consider the
triangle graph, which has m = 3 edges but a maximum cut of only 2. The Edwards paper [3]
originally presented a correct bound, which was mistranslated on the Wikipedia page. Hence, I have
corrected this error on the Wikipedia page.

6. Special Graphs for Max Cut

Now that we have proven a lower bound on the max cut of a graph G in general, we consider a
few cases of special graphs where the max cut is solved.

Theorem 6.1

For a complete graph Kn the max cut of Kn is m2 if n = 2m is even, and if n = 2m+ 1 is
odd then the max cut of Kn is m(m+ 1).

Proof

Proof. If n = 2m m ∈ N then partition half the vertices into A and half into B. Because
the graph is complete, every vertex in A will be connected to every vertex in B, and vice
versa, giving m2 edges in the cut.

A
m vertices

B
m vertices

MATH336 PAPER 9

If you partition in any other way, then without loss of generality A has j < m j ∈ N
vertices where B has remaining 2m− j vertices, in which case there will be j · (2m− j) edges
in the cut. We want to show that m2 > j(2m− j) to show that the max cut of G is m2.

m2 > j(2m− j) ⇐⇒
m2 − 2jm+ j2 > 0 ⇐⇒

(m− j)2 > 0

This is true for all j ̸= m i.e for all j < m which completes the proof for complete graphs
with an even amount of vertices. If instead n = 2m + 1 then we place x vertices in A and
(n − x) vertices in B, then the number of edges in the cut given by this partition will be
x(n− x) where x, n ∈ N and we wish to maximize this as a function of x.

A
x vertices

B
n− x vertices

f(x) = xn− x2

f ′(x) = n− 2x

f ′′(x) = −2

Since we cannot attain a critical point at n = 2x since n is odd, we use the fact that f is
concave down, which implies that the nearest maximum we can attain are at the nearest
integer values to n

2 = x, which are x = m and x = m + 1. In both scenarios, sorting m
vertices into A and 2m+1−m = m+1 into B or m+1 into A and 2m+1−m−1 = m into
B we get m(m+1) edges in the cut, which is maximal as we have shown above, completing
the proof. ■

Theorem 6.2

The max cut for a tree graph with m edges is m.

Proof

Proof. For a tree graph, there are no cycles.

a

b c

d e f

10 AUSTIN ULRIGG

So for any vertex a we can place it without loss of generality in A and place its adjacent
vertices in B, and then place the neighbors of those adjacent vertices back into A. We can
continue this process, never losing any edges as if any of a’s neighbors were adjacent to a
vertex connected to a then this would form a cycle. Therefore, we can partition the graph
in this fashion to attain a cut with m edges. ■

Theorem 6.3

The max cut of a planar graph G is solvable in polynomial time. [2]

Proof

Proof. To see a proof of this theorem see [2]. ■

Now that we have proven some theorems about the max cut problem in a general setting we begin
with the presentation of the Goemans-Williamson algorithm [10].

7. Goemans-Williamson

The Goemans-Williamson algorithm is an algorithm that recovers at least 87.8..% of the max
cut of any graph G in polynomial time. Additionally, this percentage is not as random as it seems,
if the unique games conjecture (an unproven conjecture in theoretical computer science) is true,
unless P = NP this is the best guaranteed approximation of the max cut by any polynomial time
algorithm. [6] We now present a proof and formulation of Goemans’s and Williamson’s algorithm.
Recall Lemma 4.1:

Lemma ▶ 4.1

[9] For a graph G with n vertices, and aij being the entry in the i’th row and j’th column
of the adjacency matrix of G,

maxcut G =
1

4
max

xi∈{−1,1}

n∑
i,j=1

aij(1− xixj)

Since the maximum cut problem is NP-hard, and given its equivalence to this quadratic program,
the quadratic program is also NP-hard. However, in an attempt to approximate the maximum cut,
we can instead attempt to approximate the maximum of this quadratic program by relaxing it into
a semi-definite program. Consider if instead of the xi in the sum taking on binary values 1 or −1 we
allowed xi to be vectors in Rn with ||xi|| = 1 and instead tried maximizing what we will call SDP
G:

SDP G =
1

4
max

||xi||=1

n∑
i,j=1

aij(1− ⟨xi, xj⟩)

As described earlier in the formulation of the quadratic program, any term in the summand is either
2 if xi ̸= xj and aij = 1, or 0 otherwise. We can recover any non-zero term in this summand in our
new relaxed program by choosing xi = (1, 0, 0, . . . , 0) and xj = (−1, 0, 0, . . . , 0) then ⟨xi, xj⟩ = −1
and aij(1 − ⟨xi, xj⟩) = 2. Thus, it is clear that any maximum of the quadratic program can be
recovered by this relaxation which is maximizing over a larger space, so we have another lemma:

MATH336 PAPER 11

Lemma 7.1

SDP G ≥ maxcut G

Proof

Proof. The proof follows completely from our above reasoning that any maximum value
attained by the quadratic program equivalent to the maximum cut can be attained by
choices of xi in SDP G.

SDP G =
1

4
max

||xi||=1

n∑
i,j=1

aij(1− ⟨xi, xj⟩) ≥
1

4
max

xi∈{−1,1}

n∑
i,j=1

aij(1− xixj) = maxcut G

■

The purpose of relaxing our quadratic program was to make it computable in polynomial time,
which would be the case if our new program was linear. However, it is not yet clear why SDP G is
linear. We introduce a new decision variable pij for each i, j ∈ V and we want that pij = ⟨xi, xj⟩ in
order to make use of this new variable in SDP G. We aim to show that our new program is linear,
allowing us to solve it efficiently.

Entries of a symmetric matrix P have the form pij = ⟨xi, xj⟩ if and only if P = XTX for some
matrix X ∈ RV×V which is equivalently the quality of a matrix being positive semi-definite. This
implies that for such matrix P ,

zTPz ≥ 0 ∀z ∈ Rn

And, that for any fixed z ∈ Rn we have that
∑

i,j∈V pijzizj ≥ 0, which is linear in pij , our decision
variable. Thus, we have a new lemma:

Lemma 7.2

Our relaxed program SDP G is equivalent to,

1

4
max

||xi||=1

n∑
i,j=1

aij(1− ⟨xi, xj⟩) =
1

4
max

n∑
i,j=1

aij(1− pij)

Subject to the conditions:∑
i,j∈V

pijzizj ≥ 0 ∀z ∈ Rn, pij = pji, pii = 1 ∀i ∈ V

Where the first two conditions ensure that this is a semi-definite program as P is a symmetric
positive semi-definite matrix, and condition three ensures that all ||xi|| = 1.

In general, semi-definite programs can be solved in polynomial time with methods like the interior
point method and the ellipsoid method which we will not get into the specifics of; but the interested
reader can read chapter 13 of Graphs and Geometry by Lovász [7] to learn more.

However, it is important to note that a solution to our semi-definite program will be a list of n
vectors in Rn, not a cut of our graph. Surprisingly, the most difficult part of using this relaxation for
the max cut is translating the result back into a meaningful cut. The key idea used to “round” each
vector in the solution of our SDP back to a binary value 1 or -1 is to use a method called Randomized
Hyperplane Rounding. Essentially, rounding vectors in Rn to 1 or -1 depending on what side of a
random hyperplane they land on. This raises the question: What is a random hyperplane in Rn

and how do we choose one? One method is as follows. Sample n independent standard random

variables with mean 0 and variance 1, y1, . . . yn and let n⃗ = (y1,...,yn)
||(y1,...,yn|| and have n⃗ be the normal

vector defining your random hyperplane in Rn. Now that we have a random hyperplane defined by

12 AUSTIN ULRIGG

its normal vector n⃗ we round our vectors xi for i ∈ V that solved our SDP into two vertex sets A
and B as follows:

A = {i ∈ V |⟨xi, n⃗⟩ ≥ 0}

B = {i ∈ V |⟨xi, n⃗⟩ < 0}
Which partitions the vertices according to which side of the hyperplane with normal vector n⃗ they
lie on. Then, Goemans-Williamson algorithm can be stated as follows.

Theorem 7.1

The expected weight of the cut given by partitioning the vertices of G into disjoint sets
A and B using the SDP relaxation detailed above and randomized hyperplane rounding is
greater than or equal to 0.878 ·maxcut G.

E[#E(A,B)] ≥ 0.878 ·maxcut G

We will present the proof of the theorem after another key lemma.

Lemma 7.3

The probability that any edge (i, j) is in the cut is

P [(i, j) in the cut] ≥ .878 ·
[
1

2
(1− ⟨xi, xj⟩)

]

Proof

Proof. Let (i, j) ∈ E and consider the 2D subspace spanned by xi and xj , the solution
vectors in Rn from the SDP relaxation. Vectors xi and xj are placed on different sides of
the cut if and only if they’re split by the projection of n⃗ onto this subspace. Let θ be the
angle between xi and xj then one has that the probability edge (i, j) is in the cut is θ

π . The
following image is provided for clarification.

[5]

Additionally, one has that

⟨xi, xj⟩ = ||xi||||xj || cos(θ) = cos(θ)

MATH336 PAPER 13

Thus,
(1− ⟨xi, xj⟩) = (1− cos(θ))

We leave out of the proof but point out that it is sufficient to prove that,

P [(i, j) in the cut] =
θ

π
≥ .878 · [(1− cos(θ))] ∀θ ∈ [0, π]

■

Now we finally prove Theorem 7.1.

Proof

Proof. First recall that in Lemma 4.1 we noted that the constant factor of 1/4 was due to
a quadruple counting of edges in the cut, partially due to that summing over the vertices
will return a value of 2 for both edge (i, j) and (j, i) although these are the same edge.
Reformulating Lemma 4.1 slightly to instead sum over the edges we have,

E[#E(A,B)] =
1

2

∑
(i,j)∈E

aijP [(i, j) in the cut]

Then by linearity of expectation and Lemma’s 7.1, and 7.3 it follows that,

E [#E(A,B)] =
1

2

∑
(i,j)∈E

aijP[(i,j) in the cut]

=
1

2

∑
(i,j)∈E

aij
θ

π

≥ .878 · 1
2

∑
(i,j)∈E

(1− ⟨xi, xj⟩)

= .878 · 1
4

n∑
i,j=1

(1− ⟨xi, xj⟩)

= .878 · SDP G

≥ .878 ·maxcut G

Which completes the proof. ■

8. Conclusion

The maximum cut problem is extremely applicable with applications in theoretical computer
science, network design, machine learning and even theoretical physics. Math students can benefit
from reading this paper due to its exploration of several advanced, powerful, and relatively new
problem-solving, including:

• Randomized Hyperplane Rounding: The technique used to round solutions of the semi-
definite program in Goemans-Williamson’s maximum cut algorithm which can be used to
relax solutions from other SDP’s and provide approximations to many problems.

• Semi-definite programming (SDPs): Semi-definite programming is a powerful gener-
alization of linear programming which is “The most substantial tool in combinatorial opti-
mization in the last 50 years.” [7]

• Probabilistic method: A non-constructive problem-solving method often used to prove
the existence of certain structures within graphs when creating specific examples is extremely
difficult.

14 AUSTIN ULRIGG

While its connection to the P = NP conjecture may seem daunting, improvements on the Goemans-
Williamson algorithm seem to not be impossible, as algorithms like Burer-Monteiro-Zhang (BMZ)
and others have been observed to outperform Goemans-Williamson in practical settings, although
the reasons why are currently unknown. Further research can be done on developing algorithms
that guarantee cuts of at least

(
1
2 + ε

)
·maxcut, because as we have seen in the proof of our initial

algorithm, a method guaranteeing
(
1
2

)
·maxcut is very easy, but achieving even slight improvements

has proven extremely challenging.

REFERENCES 15

References

[1] Bela Bollobas and A. Scott. “Better bounds for Max Cut”. In: Bolyai Soc. Math. Stud. 10
(Jan. 2002).

[2] Glencora Borradaile. “Lecture 2: MAXCUT for planar graphs”. In: (2014).
[3] C. S. Edwards. “Some Extremal Properties of Bipartite Subgraphs”. In: Canadian Journal of

Mathematics 25.3 (1973), pp. 475–485. doi: 10.4153/CJM-1973-048-x.
[4] Richard M. Karp. “Reducibility Among Combinatorial Problems.” In: Complexity of Com-

puter Computations. Ed. by Raymond E. Miller and James W. Thatcher. The IBM Research
Symposia Series. Plenum Press, New York, 1972, pp. 85–103. isbn: 0-306-30707-3. url: http:
//dblp.uni-trier.de/db/conf/coco/cocc1972.html#Karp72.

[5] Lily Li Kevan Hollbach. “Goemans and Williamson (1995) — “Goemans and Williamson
Algorithm for MAXCUT””. In: (2018).

[6] Subhash Khot et al. “Optimal Inapproximability Results for MAX-CUT and Other 2-Variable
CSPs?” In: SIAM Journal on Computing 37.1 (2007), pp. 319–357. doi: 10.1137/S0097539705447372.
eprint: https://doi.org/10.1137/S0097539705447372. url: https://doi.org/10.1137/
S0097539705447372.

[7] L. Lovász. Graphs and Geometry. American Mathematical Society colloquium publications.
American Mathematical Society, 2019. isbn: 9781470453541. url: https://books.google.
com/books?id=0XsOywEACAAJ.

[8] “P versus NP problem”. In: Wikipedia (2024).
[9] Stefan Steinerberger. “MATH563 Lecture Notes”. In: (2024).
[10] Bradley H. Theilman and James B. Aimone. “Goemans-Williamson MAXCUT approxima-

tion algorithm on Loihi”. In: Proceedings of the 2023 Annual Neuro-Inspired Computational
Elements Conference. NICE ’23. , San Antonio, TX, USA, Association for Computing Ma-
chinery, 2023, pp. 1–5. isbn: 9781450399470. doi: 10.1145/3584954.3584955. url: https:
//doi.org/10.1145/3584954.3584955.

[11] https://en.wikipedia.org/wiki/Maximum_cut.

https://doi.org/10.4153/CJM-1973-048-x
http://dblp.uni-trier.de/db/conf/coco/cocc1972.html#Karp72
http://dblp.uni-trier.de/db/conf/coco/cocc1972.html#Karp72
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1137/S0097539705447372
https://books.google.com/books?id=0XsOywEACAAJ
https://books.google.com/books?id=0XsOywEACAAJ
https://doi.org/10.1145/3584954.3584955
https://doi.org/10.1145/3584954.3584955
https://doi.org/10.1145/3584954.3584955
https://en.wikipedia.org/wiki/Maximum_cut

	1. Introduction
	Definition of a Graph
	Example Graphs
	The Adjacency Matrix of a Graph
	Definition of the Adjacency Matrix of a Graph

	2. Maximum Cut Problem
	3. P=NP Conjecture
	4. What's to Come
	Quadratic Program Reformulation
	Lemma 4.1

	5. Lower Bounds
	Theorem 5.1
	Theorem 5.2 Edwards-Erdös
	Lemma 5.1
	Remark
	Remark

	6. Special Graphs for Max Cut
	Theorem 6.1
	Theorem 6.2
	Theorem 6.3

	7. Goemans-Williamson
	Lemma 7.1
	Lemma 7.2
	Theorem 7.2 Goemans-Williamson
	Lemma 7.3

	8. Conclusion
	References

